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ABSTRACT 

We continue our research on the relative strength of L-like combinatorial 
principles for successors of singular cardinals. In [3] we have shown that the 
existence of a A+-special Aronszajn tree does not follow from that of a 
A +-Souslin tree. It follows from [5], [4] and [6] that under G.C.H. []~ does imply 
the existence of a A +-Souslin tree. In [2] we show that [S]~ does not follow from 
the existence of a A +-special Aronszajn tree. Here we show that the existence of 
such a tree implies that of an 'almost Souslin' M-tree.  It follows that the 
statement "All A+-Aronszajn trees are special" implies that there are no 
A +-Aronszajn trees. 

THEOREM 1. If  there is a h +-special Aronszajn tree and A is a singular strong 

limit cardinal 2 ~ = A *, then there is a (A ÷, oo) distributive Aronszajn tree on A ÷ 

COROLLARY. I f  there are A+-Aronszajn trees, A as above, then there are 

non-special A +-Aronszajn trees. 

PROOF OF THE COROLLARY. Just note that a (A +, oo) distributive tree cannot be 

special, forcing with such a tree (as a partial order) adds no sets of size =< A to the 

universe, so such a forcing does not collapse A +. On the other hand, if T is 

special and f:T---~ A one-to-one on each branch, the specializing function and 7/ 

is a generic branch through T, then I r/I = A + and f r r / is  a one-to-one function to 

A. Thus forcing with a A +-special tree collapses A + 

Let []~ (a square with a built-in diamond) denote the following combinatorial 

principle: There exists a D,  sequence ( C o ' a  ~ lira A +) and a O~+ sequence 

(S~ : a E lim A +) s.t. for any X C_ h + for every closed unbounded C C_ X + and for 

every 8 < h  there is some a < A  + s.t. otp(C.)>=6C~C_C and for every 

xn/  
Shelah has proved that for a strong limit singular A, if 2 * = h ÷ then Fq, --. [~^ 

[1]. 
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We shall use a modification of [],. Let []* denote the existence of a weak 

square sequence (Ao : a E lim(h +)) and a O~. sequence (Be : a E lim(h +)) with 

enumerations 

A~ ={a~a : i<h} ,  B ~ = { b ~ : i < h }  

s.t. for all i, a otp(a~)< h, a~, cofinal in a, b~C a and for any X C_ A+ for every 

c.u.b. CC_A* and every ~ < h  there is some a~oC_Cotp(a~)>6 and for all 

/3 E (a~o)U {a}, a g, A /3 E A~ a n d X N / 3 ~ B ~ .  

LEMMA l. Let h be a strong limit singular cardinal 2 ~ = h ÷ then ~* follows 

from the existence of a h ÷ special Aronszajn tree. 

PROOF. By Jensen [5] the existence of such a tree is equivalent to El*. 

Imitating the proof of [3, ~ [], (th. 2.3 of [1]) one can easily get [-3" ~ []*~ (for h 

as assumed by the lemma). 

PROOF OF THE THEOREM. Assume t~] and let us construct a (h*,oo) distribu- 

tive Aronszajn tree. 

By Lemma 1 this will establish our theorem. 

DEFINITION OF THE TREE. We define T r (a + 1) by induction on a < h +. 

a successor: For any node X E (T [ a ) ,  ~ (the last level of T [ a )  add h many 

immediate successors. 

a limit: (i) We fix a one-one mapping of h * × h  + onto it +, through this 

mapping we regard each member of our O part of the D* sequence as a set of 
i _ b~j to i = pairs b~ C/3 ×/3, define be its projection on j, b~j { y ' ( j y ) E b ~ } . W . l . o . g .  

the nodes of T are ordinals in A + and T [ a C_ a (where T [ a = U;3<o T [/3) for 

each x E T I a, 6 < A and (ij) E A x A we define a branch in T r a extending x, 

<q) (q)tO~ <q)I¢ • /~.~ by induction. ,/~.~ , = the ~'s immediate successor of x. ~/x.~s + 1)= the 
( i j ) l  ~. i first ordinal that is above r /x ,~)  (in the order of T r o~) s.t. its level is above a ~(~) 

(the s c member of the ~* seq. a~) and it belongs to b~e (the seth projection of the 

j th  member of/3,) .  

If there is no such node we terminate the branch. At a limit ~ we pick the first 

node above U~<ertx,~,,), if there is such a node, otherwise we terminate the 

branch. 

(ii) We fix throughout the construction of T a O~+ seq. (S~ : a  E A +) (the 

existence of such a diamond seq. is guaranteed by our assumptions on A). 

Now we define the a ' s  le~,el of T I (~ + 1) by adding a node on top of each r/<~J>~.~ 

that is cofinal in T ro~ itt <~J> r/~,~ ¢ S, (as sets of ordinals). 

This completes the definition of T. Let us show that it realizes our intentions. 
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LEMMA 2. The construction can be carried on for all a < A +. We prove by 

induction on a for every x E T ra  there are A - m a n y  members  of  T~ = 

(T  [ (a + 1)), above it. 

If a is a successor it follows immediately from the definition of ( T r ( a  + 1)),~. 

For a limit a pick any ai, E A,  s.t. a~, n /3  C As for all/3 E (a',)', w.l.o.g, we can 

assume that for every a < A +, bose = a for all st < otp(ai~). 
r (i(I)  For each x E T r a the set ~r/x.~ " 8 < A } has size A. The only possible reason 

for a termination of any branch there before it reaches a, is if for some/3, a limit 

point of ~ <"'> a° ,  7/x.~ r/3 = S~, as I a~o[ < A this may happen for less than A of these 

branches. 

LEMMA 3. T is (A +, ~) distributive. 

As A is singular it is enough to show (A, ~) distributively. Let (D~ : a < / z  < A) 

be a list of dense open subsets of T. For each a < / z  there is a c.u.b. C~ C A + s.t. 

/ 3 ~ C a ~ D ~ N / 3  is dense in T[/3. Let c = N ~ < , C , .  

By the properties of ~ ,  for every x E T we can find a < A + s.t. x E T r a and: 

for some a ;~ E As, a ~, C C, otp(a ;~) > / z  and for all 6 E (a ;~)' U {c~ }, a ~, n 6 ~ A~ 

and X n (6 × 6) c B~ where X = {(y, st) : 3' < tz, st ~ D~}. 

Let j be s.t. X no t  = b~. As b~ = X n a we get for all st < tz b~  = D~ N a. As 

,) >/x,  if there is a branch of the form " ~j> otp(a '  rt~.~ cofinal in T I a  this branch 

intersects each of the D~'s. In the definition of T I (a + 1) we have added a node 

y on top of this branch so x < y E n~<,, D~. Let us check that such a cofinal 

branch does exist. 

Our definition of the rl's was uniform enough to guarantee that for/3 E a'6 if 

i '= a~ n fl and br  = b~ n /3 then ~ ~'n ~ ~J) ,-, as  "O,,~ = r/x.~ ~/3. (Note that as aoC_ C each 

Dt O/3 is dense in T I/3.) We will use double induction. By induction on/3 E a ~o 

we prove that all but < ] otp(a ~o [/3 )1 of the ~-" 'n  = ,ix.~ are cofinal in T I/3 for ( i ' , j ' )  s.t. 
i '  a ~ n /3  = as  and b~N/3 = b r. This is proven by showing that ~rl<~'n'~'~,~ t¢) is defined 

i '  for all s t < otp a ~ and this by induction on st. 
i '  i /3 l imi tpoin t  in a~ Pick ( i ' j ' )  such that a ~ n / 3  = a~, b , n / 3  = b r use the f rs t  

induction hypothesis and the definition of the (/3 + 1)'s level of T. 

/3 successor in a i,: Here we use induction on st < otp a ~. As/3 E a ~ C C each 

De n /3  is dense in T I/3 so the only obstacle that may stop ~ (~'n ~/~,~ from being 

cofinal in T I/3 are the demands of the diamond seq. S~. S~ terminates, at stage 

y, at most one branch; as o tp (a~)<  A almost all of our branches reach their full 

length and are confinal in T I/3. 

LEMMA 4. T is a A +-Aronszajn tree. 
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PROOF. It is clear by the definit ion of T that  the cardinali ty of each level is at 

mos t  A. 

By L e m m a  2 the height of T is A +. It remains  to show that  there  is no cofinal 

branch  in T. 

Assume  that  ~ is such a b ranch;  as I TI  = A÷ we can regard  T as a subset  of A + 

so ~ is a subset  of A +. The re  is a closed u n b o u n d e d  subset  of A+, C, s.t. for  

a E C, W f a  (the first a m e m b e r s  of  T/ in the order  of T)  equals  7 / n  a (as 

subsets  of  A+). ( S o : a  < A +) is a Q *  seq. so for  some s ta t ionary  S C_ A +, 

~ / n a = s ~  for  a l l c ~ E S .  Pick a ~ s n C ; f o r s u c h a n  a,  T / rc~--S~ so by the 

definit ion of the (a  + 1)th level of T, "q I t~ has no extension in T, contradic t ing 

the a s sumpt ion  that  ~ was u n b o u n d e d  in T. 
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